引用本文: |
宋若萌,郝军,云科,等.缺失值处理方法探索:基于个体水平数据的卫生经济学评价*[J].中国卫生经济,2023,42(7):6-9.[点击复制] |
Song Ruomeng,Hao Jun,Yun Ke,et al.Exploring the Missing Data in Health Economic Evaluations: Health Economic Evaluation Based on Individual Level Data[J].CHINESE HEALTH ECONOMICS,2023,42(7):6-9.[点击复制] |
|
本文已被:浏览 1063次 下载 912次 |
 码上扫一扫! |
缺失值处理方法探索:基于个体水平数据的卫生经济学评价* |
宋若萌,郝军,云科,李汶檀,章溪妍,辛雨,吴昌金,蔡源益,吴华章,惠文 |
|
(中国医科大学健康管理学院 沈阳 110122;中国医学科学院北京协和医学院 北京 102300 ;中国医学科学院阜外医院 北京 102300 ;国家心血管病中心医学统计部 北京 102300;中国医科大学附属第一医院 沈阳 110122;四川大学华西医院 成都 610041) |
|
摘要: |
目的:文章系统探讨基于个体水平数据的卫生经济学评价中缺失值的系列问题,为实际研究中正确处理和报告缺失值提供参考。方法:在回顾一般缺失值问题的基础上,梳理基于个体水平数据的卫生经济学评价中数据缺失的原因、类型和处理方法等。结果:多重插补法是缺失值处理方法最常见的方法,在使用该方法时要注意合理选择插补具体方法、插补建模类型和插补模型的变量。结论:当前卫生经济学评价中关于缺失值的处理和报告还未形成已达成共识的质量规范,有待未来进一步探索 |
关键词: 统计数据缺失 个体水平数据 卫生经济学评价 |
DOI: |
投稿时间:2023-04-27 |
基金项目:教育部人文社科基金 (22YJCZH065);四川省自然科学基金 (2023NSFSC1046) |
|
Exploring the Missing Data in Health Economic Evaluations: Health Economic Evaluation Based on Individual Level Data |
Song Ruomeng,Hao Jun,Yun Ke,Li Wentan,Zhang Xiyan,Xin Yu,Wu Changjin,Cai Yuanyi,Wu Huazhang,Hui Wen |
(School of Health Management, China Medical University, Shenyang, 110122 , China) |
Abstract: |
Objective: To systematically explore a series of issues related to missing data in health economics evaluation based on individual level data, providing references for correctly handling missing data in practical research. Methods: Based on reviewing the basic of missing data, it summarized the causes, types, and handling methods of missing data in health economics evaluation based on individual level data. Results: Multiple-imputation is the most common method for handling missing data. In the application of the method, care should be taken to choose the specific method of interpolation, the type of interpolation modelling and the variables of the interpolation model wisely. Conclusion: There is no universal agreement quality standard for the handling and reporting of miss- ing data in health economic evaluation, which needs to be further explored in the future. |
Key words: missing statistical data individual level data health economic evaluation |